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Abstract

This paper describes further developments in
picosecond pump/probe combustion diagnostics. The
rate equation formalism originally used to model
pump/probe has been extended to molecules, and it has
been used to estimate new detection limits for various
species of importance to combustion. In practice, we
typically use 2 ps or 60 ps pulses, an interaction for
which the rate equation limit is not entirely appropriate.
The bulk of this paper describes a new non-perturbative
density matrix model that more exactly describes the
pump/probe interaction and briefly compares it to the
rate equation formalism.

Introduction

We have demonstrated in previous work' that
picosecond pump/probe is a combustion diagnostic
offering an absolute determination of number density. In
the rate equation limit, the measurement does not
require calibrations or corrections’. It is, essentially, a
spatially resolved absorption measurement. Even
molecules with poor fluorescence yield can be observed
with pump/probe. We expect that pump/probe
measurements will be insensitive to- the collisional
environment, because it’s possible to make the
measurement in time scales much smaller than normal
collisional times. Moreover, the transform-limited
bandwidth of picosecond pulses is broader than single
linewidths, so pressure effects on linewidth do not
propagate to the signal.

For a laser source, we prefer to use mode-locked
cw lasers because cw laser diagnostics are capable of
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recovering all the relevant frequency spectrum
information in turbulent flames, power spectral densities
(psd's) for example. Psd's require up to 10 kHz
bandwidth. Cw lasers also allow continuous monitoring
of rapid events, such as ignition. It is important to note,
however, that the overall instrumentation bandwidth is
controlled somewhat by the detection limits required of
the measurement. Pump/probe is a linear technique that
scales with pump pulse energy, so the detection limit
can be lowered with amplification. The pulses emitted
by a mode-locked Ti:sapphire laser oscillator have
energy on the order of 20 nJ at the peak of the
fundamental (giving peak power in the kilowatt regime).
With amplification, pulse energies can reach 0.01 mJ at
50 kHz, and 1 mJ at 1 kHz. While amplification can
reduce the instrumentation bandwidth, it provides
significant pulse energy, and this is a trade-off that must
be considered.

In what follows, we briefly describe a rate equation
model for pump/probe as it would be applied to
molecules, and we quote expected detection limits for
CH, as one example. The rate equations are not fully
appropriate for a picosecond interaction, so we describe
the development of a non-perturbative, 2-level density
matrix model for the pump/probe interaction. Here we,
include a discussion of the numerical approach used.
We then present some results of the model and briefly
compare it to rate equation results for the potassium
atom. We then conclude by discussing future directions.

Pump/Probe

~ In Pump/Probe spectroscopy, the output from the
laser is tuned to a transition of interest and the beam is
split into two portions. The pump beam (typically much
stronger) is directed through a modulator, and is crossed
with the probe beam (typically much weaker) in the
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flame. This beam crossing forms a sample volume
within the flame (see Fig. 1). The pump modulation is
impressed upon the resonant molecules in the sample
volume because the populations of the ground and
excited state are modified by the presence of the pump
beam. These populations then modulate the probe beam
at the intersection via absorption and stimulated
emission, changing the probe irradiance at the
modulation rate. This change in irradiance is defined as
the modulation depth, expressed as a fraction of the
total probe irradiance. After the flame, the pump beam
reaches a beam stop, and the probe beam is detected.
The detector signal is then synchronously demodulated
using a lock-in amplifier. The measured probe
modulation depth is proportional to the concentration of
molecules. For optically thin conditions, the modulation
depth will be at most a few percent. Nevertheless, for
mode-locked lasers’, the minimum detectable
modulation depth is approximately 10°%,

pump out -
directed to
astop

probe input

modu|qfed flow-field weakly modulated
pump input probe out - directed
fo a detector
Figure 1. Schematic of single-point Pump/Probe

interaction in the flow-field.

We use a Spectra-Physics regeneratively mode-locked
Ti:sapphire laser, equipped with both a 2 ps and a 60 ps
Gires-Tournois interferometer (Kafka et al., 1992). This
laser produces about 1.8 W of output when pumped
with 8 W from an intra-cavity doubled, diode-pumped
Nd:YVO, laser, with autocorrelation pulse-widths
around 1.4 ps in the 2 ps configuration. The transform-
limited bandwidth is about 0.2 nm. This radiation can
then be frequency doubled in 6 mm of LBO to give up
to 500 mW of 400 nm radiation. The laser wavelength
is monitored several ways: first the laser is tuned using a
Burleigh WA 4500 wavemeter, then the flame is ignited
and we observe fluorescence. Finally, when signals had
been established, the laser is tuned to maximize the

signal.
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Rate Equation Models

In the interest of preserving space for a discussion of
the density matrix model, we discuss rate equation
models only briefly. Further details can be found in the
work by Fiechtner ef al.® and by Settersten and Linne*.

In our experiments, both the pump and probe are in
resonance with the same transition. For a two-level
atom, the rate equations then give a modulation depth

described by’ :
' PIOPN |

1 2
D= 1
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where : )
g degeneracy of level i = 1 or 2,
D =  focal diameter,
L = beam interaction length,
f* = laserrepetition rate,
vz =  transition frequency,
Ay}, =  laser bandwidth,
ple = average power of the pump beam,
A; =  Einstein coefficient for spontaneous
emission,
Ny =  absolute number density of absorber.

Here the modulation resides on a large intensity carrier
(typically 10* to 107 larger than the modulated portion
of the signal). The model assumes an optically thin
analyte, the linear absorption regime, a 2-level system, a
temporal top-hat pulse profile and broad bandwidth
with respect to the absorption linewidth. The
modulation depth (oop) is easy to measure, and this is
related directly to the number density (N1). The other
terms in equation (1) are usually known or can be
measured.

We have demonstrated that Pump/Probe is an
absolute determination of number density when this
equation was applied to our Potassium measurements
and then compared to atomic absorption spectroscopy
using a Tungsten filament lamp'.

Equation (1) represents several approximations, and
applies only to a 2-level spectroscopic system. It’s easy
to use the equation, however, to infer the effect of
variables (e.g. pump pulse energy) on the signal, and
this is the real utility of the expression. We have
recently developed an extended rate equation model for
a molecular pump/probe interaction by accounting for
numerous ro/vibrational levels, including: the individual
Boltzmann fractions, Einstein rate constants for each
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line, line broadening and overlap between the laser
linewidth and the individual lines pumped by the laser.
It was simply assumed that the interaction could be
represented by a summation over a number of distinct 2-
level resonances. In doing so, the term in square braces
in equation (1) becomes:

8, 82,
Z A22l,i 1"521,1' f Boltzmann,i n; —gf_, [1 + _Z_J (2)

Li Li

The two additional terms in this expression are the
Boltzmann fraction fayizmams; and an laser interaction
efficiency #7;. The laser interaction efficiency simply has
the form of the normalized laser spectral profile.
Resonance lines that do not fall on line center will have
17 < 1. We assume that energy re-distribution within the
upper manifold is negligible within the 10 ps time frame
spanning the pump and probe interactions. As before,
we assume a top-hat temporal pulse profile. We use the
model to computationally tune the laser and maximize
the P/P signal. The current optics set in our Ti:sapphire
oscillator will allow us to reach the CH B —» X
electronic transition, which is of particular interest to us.
The tuning shown in Figure 2 maximizes the
pump/probe signal for the B — X electronic transition,
for a 2 ps and 60 ps pulse. Further details can be found
in the work of Settersten and Linne’. That work makes
extensive use of the spectroscopic data of Luque and
Crosley®*”® and Zachwieja’.

The model just described, when used with
conservative numbers (e.g. we assume 200 mW average
pump power at about 400 nm when we have routinely
reached 300 mW at the experiment), indicates that we
can achieve the detection limits contained in Table 1,
where the detection limit is written in terms of the
following:

N (lower limit) = B X aimop (lower limit).

We write it this way because the limit of detection is
clearly linked to the lowest modulation depth detectable
by the electronics. To detect peak levels of CH in a
2500 K CH,-O, flame (roughly 10" ¢m™), our current
pump/probe detection system (for the CH B —» X
transition and a 2 ps pulse) must see a signal level of
5x107. CH has many energy levels at about the same
term value, which produces fairly low Boltzmann
fractions for individual lines, and this is the major
limitation. Our former Ar:lon laser pumped Ti:sapphire
system generated unusually large amounts of 1/f noise
in the probe beam. When this was coupled with a
mechanical chopper (at 4 kHz), a modulation depth of
10”7 was impossible to measure. These issues lead us to

¥
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Figure 2. Example : a. Overlap between part of the CH
B — X (0,0) band (mixed P,Q & R-branch lines) and
the laser emission linewidth at 2 ps - this laser tuning
gives maximum P/P signal, b. Similar overlap for 60 ps.

Table 1
Estimated Detection Limits for Standard Pump/Probe

Molecule/Transition _A(nm cm™) pulsewidth(ps

CH B> X 39029 5.0x10% 2
CH B> X 390.30 2.0x10%” 60
CH A-X 43124 50x10? 2
CH A-X 43098 12x10"” 60

The following parameters were used : average cw laser
power = 200 mW, laser rep rate = 82 MHz, beam focus diam.
= 100 pom, interaction length = 100 um, laser bandwidth =
3.15x10" Hz — 0.16 nm (at 390 nm).

investigate the 60 ps case. For the 60 ps case, we would
need to reach 2 x 10 modulation depth (a routine
measurement) if the same average power were
available. Unfortunately, doubling -efficiency falls
rapidly as one goes to 60 ps in the fundamental, where
we achieve only a few mW in the blue, increasing the
detection limit by the ratio of power levels.

We can improve the basic cw experiment in a
straightforward way. We are currently installing a 10 W
intra-cavity doubled, diode-pumped Nd:YVO, pump
laser. This will reduce the noise in the Ti:sapphire
significantly. The manufacturer’s data show an order of
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magnitude lower noise for this pump laser when
compared to a properly operating Ar:lon laser. This new
laser system will be used with an E/O modulator and
lock-in extender (both operating at > 100 kHz, beyond
the 1/f noise spectrum for this laser). It is not clear at
this point what lower limit of modulation we can reach
with this system. Work continues in this 82 MHz
regime, but amplifiers are another approach for
reducing the detection limit.

Wright Laboratories has recently installed a 50 kHz
Ti:sapphire regenerative amplifier that produces 0.01
mJ/puise in the red. This will easily give pump energies
near 2 pJ/pulse at 2 ps and 400 nm. The values for P in
Table 1 will then be decreased by a factor of about 107,
In the amplified case, to detect the same peak levels of
CH B — X in the 2500 K CH;4-O, flame at 2 ps, the
detection system would need to see a signal level of
10, which is trivial.

The group at CSM has recently ordered a
complimentary 1 kHz regenerative amplifier, generating
1 mJ in the red. This will easily give pump energies near
200 pi/pulse at 2 ps and 400 nm. The values for p in
Table 1 will then be decreased by a factor of about 10*,
In the amplified case, to detect the same peak levels of
CH B — X in the 2500 K CH4-O, flame at 2 ps, the
detection system would only need to see a signal level
of 1%. Another way to state the same fact is that the
detection limit will be reduced by a factor of 10*, at the
price of instrumentation bandwidth. The group at CSM
is interested in using pump/probe for imaging, however,
requiring that the pump beam be spread into a sheet.
Clearly, extra pump pulse energy is required in order to
accomplish this.

Density Matrix Model

As stated in the introduction, we expect that
pump/probe measurements will be insensitive to the
collisional environment, because it’s possible to make
the measurement in time scales much smaller than
normal collisional times. Our pulsewidths are typically
2 ps long, and the probe pulse is adjusted to trail the
pump puise by only a few pulsewidths. These time
frames are significantly shorter than the collision times,
coherence lifetimes, and the excited state lifetimes of
molecules in flames. This necessarily means that the
probe pulse will sample the coherences created by the
pump pulse. As such, it is not accurate to use the rate
equations to describe the pump/probe interaction.

For this reason, we have developed a non-
perturbative model that is based upon semi-classical
theory. It combines the time-dependent density matrix
equations with Maxwell’s equations to describe the
propagation of the pump and probe pulses. Our goal is

4

to discover how well the rate equation model
approximates the pump/probe interaction, when it
occurs within the rate equation limits, or to find a
similarly simple expression. Failing that, we plan to find
some other way to relate the experimentally measured
modulation depth to number density. We also plan to
define the limits of applicability of such expressions,
and then to explore other sensing possibilities offered
by depattures from the rate equation limits. ’

This model combines three formalisms to self-
consistently describe pulse propagation. First, the
density matrix formalism of Quantum Mechanics
describes the microscopic response of resonant and
near-resonant atoms immersed in the laser field.
Secondly, Statistical Physics describes how the
individual atomic responses add up to produce a net
induced polarization on the macroscopic level. This
statistical averaging takes into account the Doppler
broadening of the resonance. Lastly, from Classical
Electrodynamics, we obtain the one-dimensional wave
equation that describes the propagation of the laser
pulse. Each of these topics will be discussed in three
sections to follow. Prior to that, we will set the stage
for those sections by introducing the formalism used to
represent the laser pulses.

Pulse Representation

The pump and probe pulses will be described as plane
waves traveling in the &,-direction with a linear electric
field polarization in the &-direction. The model
described here, therefore, does not assume the crossed
beam geometry shown in Figure 1, but instead a
collinear geometry. The electric field of a pulse can be
expressed as the product of a slowly varying envelope
function and a rapidly varying phase, both of which are
functions of the spatial coordinate z and the time ¢ :

E(z,1) = ,&(z,1) (e"“””‘" o0 o c.c.) A3).

Both the angular frequency @, and the propagation
constant k, are considered constants, while the slowly
varying phase term ¢(z,7) allows for dispersive effects.
With no loss of generality, ¢(z,f) can be incorporated
into the envelope function, resulting in a complex
envelope function with real and imaginary components
gfand g":

E(z,t)=é, (E (z,)e” 14 4 c.c.) @).

This transformation allows us to describe the
propagation of a pulse solely in terms of the
propagation of a complex envelope since the rapidly
varying phase term cannot change form. We describe
the net induced polarization of the sample in an
analogous way:
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P(z,f)=¢, (ﬁ(z,t) g lowtkal 4 o c.) (5).

Since the pump and probe pulses are produced from the
same laser by using a beam splitter, their envelope
functions have the same functional form with the same
initial phase @, but they can have different magnitudes.
Also, when describing both pulses in the same
coordinate system, a spatial transformation must be
applied to the probe pulse. This is due to the fact that
the pump and probe pulses travel through different
pathlengths on their way to the interaction volume. If
the probe pathlength is a distance Az longer than that of
the pump, the necessary spatial transform is z—z+Az.
Since the beams are collinear through the interaction
volume, the superposition principle can be used to
describe the total field due to both pulses. Assuming
that both pulses have the same electric field
polarization, the total electric field is equal to the sum
of the two fields. If the pump and probe pulses are each
expressed as in equation (3), the total electric field takes
the form of Equation (4) where the real and imaginary
parts of the total envelope function are given by the
following expressions.

&®(z,0) =&,(z,)cos@
cosgcosk,Az

6
+&,(z+Az,0) (62)
+singsink,Az

&' (z,t) = —&,(z,t)sing
cosgsink,Az (6b)
—singcosk, Az

An example of an envelope function used to describe a
pump and a probe pulse in this manner is shown in
Figure 6 in the “Resuits” section.

Density Matrix Equations

We use the density matrix formalism to describe the
response of resonant or near-resonant atoms to the
electric field of a laser pulse. Definition of the density
matrix, discussion of its properties, and derivations of
the density matrix equations are found in most graduate
quantum mechanics texts'®. Additionally, we have found
several books that contain useful introductions to this
formalism with particular emphasis on laser-matter
interaction''*%,

For the purposes of this study, we will model a
resonant atom or molecule as a closed two-level system.
This simplification can be justified in cases where the
resonance is isolated and where transfer rates between

+&,(z+ Az,t)[

5

the resonant energy levels and other energy levels are
negligible on the time scales considered by the model.

The two-level system that will be considered is shown
in Figure 3. The combined spontaneous emission and
collisional de-excitation rates are given by I';;. The
collisional dephasing rate y;; accounts for collisional
broadening. Collisional excitation rates are considered
negligible.

E,

Energy
¥4 Lz

E,

Figure 3. Energy level diagram for a closed two-level
system. Also depicted in the figure are
collisional/radiative de-excitation (with a rate I';;), and
collisional broadening (characterized by the coherence
dephasing rate y;).

The density matrix p for an atom contains all
necessary information about this quantum system. For a
two-level atom, the diagonal elements p;; and p,; are
the probabilities that the atom is in state 1 or 2,
respectively. For a closed two-level system, the trace of
the density matrix must be equal to one, since the atom
must be in one state or the other. The off-diagonal
elements are the coherences between the states with the
property that pz= py, -

When a resonant electric field is applied to an atom,
the interaction Hamiltonian, denoted by V, is introduced
into the Schridinger equation. In the electric dipole
approximation, the off-diagonal elements of the
interaction Hamiltonian are given by:

V(@) ==y EQt)
Vio(t) =4, E(2)

In general, the off-diagonal elements are complex
conjugates. However, the dipole matrix elements p,,
and p,; can be made purely real and equal, with no loss
of generality, if the basis vectors describing the energy
eigenstates 1 and 2 are judiciously chosen. In that case,

the interaction Hamiltonian is also purely real, and
Va=Via.

.
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The density matrix equations are a set of coupled
ordinary differential equations that describe the time
evolution of the density matrix elements in response to
an interaction Hamiltonian. With the relaxation rates
defined earlier, the density matrix equations for a 2-
level system are given by'%:

Tdr'pu =00 + ( 2P~ p21V12) (8a),

P = "(""21 + 7’21)/021 +';?V21(P22 _pn) (8b).
When the laser electric field is applied, the system
responds at the optical frequency w,. As such, it stands
to reason that the coherence can be written in terms of
the product of a slowly varying complex envelope and
the same rapidly varying phase term, as in equation (4):

).

The envelope function for the coherence has real and
imaginary parts o,;" and o', respectively.

When the interaction Hamiltonian is expressed
explicitly, and equation (9) is substituted into the
differential equations (8a) and (8b), the following two
equations result:

~ —~ ~F o~
—E0, +& Oy
4, = it o -2i(atk
a P =Ly py +5¢ 4| E0ne H@tka) 1 | (10a),
—-c.c.

—['(“’21 - )"' Y ]0'21

_ i 2i(w,t-k,z)
L1 (5 - pn)(g +&’e

Both of these equations have terms that are slowly
varying and terms that oscillate at twice the optical
frequency ®,. In the rotating wave approximation, the
rapidly varying terms are neglected. Furthermore, these
equations can be expressed in terms of the complex and
real parts of the envelope functions for the electric field
and for the coherences. This results in three real
equations:

P =Ty (1 pn)

d5 =
rri

(10b).
)

2#21

+2h (a’az’i—ekazll) (11a),

6

d R _ R 1
%21 ="Vn0y t (w21 -, )0'21

(11b),
ﬂ“ ! (1 2p, )

d 1 —— 1 _ _ R
T2 ="Yn0y (wZI a’o)o'zl

R (11c).
-5te (1 - 2,0,1)

Given an initial electric field envelope function (g),
these three equations can be directly integrated to
produce the time evolution of the coherence.

The coherence is then used to calculate the atomic
response, given by the expectation value of the atomic
dipole moment. Using the formalism of Quantum
Mechanics, the expectation value of any operator is
given by the trace of the matrix resulting from the
density matrix acting on the operator. For the dipole
moment operator, which has non-zero elements only
off-diagonal, the expectation value is simply:

(.U> = Pokby t Pakhy

5, e @t k) | o c.)

(12).
= /’21(0'21

Statistical Averagering

The net induced polarization is a macroscopic
property that results from the sum of the microscopic
responses of individual atoms, given by equation (12).
The macroscopic polarization in a volume V is the
volume average of the atomic dipole moments of all M

atoms in V:
M
P(z,1) =% {u),
i=1

The atomic dipole moments in this problem can be
parameterized by the atomic velocity component u
along the optical axis &,. Atoms traveling with different
velocities along that axis will respond to the laser
excitation at an optical frequency that is Doppler
shifted. With this in mind, we introduce a more explicit
notation that emphasizes this parameterization. A partial
polarization P(z,t;u) is defined as the time-dependent
expectation value of the dipole moment of an atom at
position z with a velocity component u:

(13).

P(z,t;u) = (u(z,1;0)) (14).

The summation in Equation (13) is treated in
statistical physics by introduction of the velocity
distribution function. For this analysis, we consider a
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steady-state and spatially-uniform Maxwellian velocity
distribution, which is only a function of the velocity
component ». In this case, the probability that an atom
has a velocity component # in the interval (4, u+du) is
given by:

2

m )i o-m
wdu=|———| e *'du (@5),
where:
m = Mass of Atom,
kg = Boltzmann Constant,
T = Translational Temperature.

Using this distribution function, Equation (13) becomes
the following integral, where Nyor is the total number
density of the resonant atomic species:

P(z,1) = Nyop [P(z,t30) fw)du  (16).

The partial polarization can be written in terms of the
coherence envelope function. In the notation of
Equation (5), the envelope function for the net
polarization is:

D(z,8) = Nyorib, ‘[521 (z.t;w) fwdu .

One-Dimensional Wave Equation

The one-dimensional wave equation is derived from
Maxwell’s Equations, and it has the following form in
MKS units (to switch to Gaussian (CGS) units, simply
replace 1/&, with 47):

% - C%%]E(z,t) = ;‘c—z—;’% P(z,t) (89).

It is desirable to reduce the second order wave
equation to a first order differential equation. This
reduction is possible using an important approximation
and a small bit of algebra. First, equations (4) and (5)
are substituted into the wave equation. Next, invoking
the slowly varying envelope approximation (SVEA),
second order derivatives of the slowly varying functions
&zt and p(zf) are neglected. Furthermore, time
derivatives of p(z,7) can also be ignored with respect to
the other terms in the equation. Finally, writing the
wave equation in terms of the real and imaginary parts
of the envelope functions, the following two real
differential equations result for terms that are in phase
and in quadrature with the optical phase:

7

ks
2¢g,

£+12]e" (@) =—12p" @) (9w,

k0
2¢,

2 1 8|1 R

z+:;7]8 (z,1) =3P (2,1) (.
A further simplification results by invoking the retarded
time transformation: 7—1=t-z/c. This change of
variables transforms the wave equations from partial

differential equations to two ordinary differential
equations that can be directly numerically integrated:

%680 =-72p'@0) e,

46 (z,0)=220"(27)  ow.
Pump/Probe Model

The complete model employs a quantum-

mechanically-correct description of the interaction of
intense laser pulses with resonant or near-resonant two-
level atoms. The resulting density matrix equations
characterize the individual atomic responses to the
applied laser field for atoms at a particular position in
space and with a particular velocity component along
the optical axis. Assuming a Maxwellian velocity
distribution for the target atoms, the individual atomic
responses are statistically averaged, resulting in the net
induced polarization at that position. The induced
polarization determines how the laser pulse propagates
in space according to the one-dimensional wave
equation. The model invokes the slowly varying
envelope approximation (SVEA) and the rotating wave
approximation (RWA) to reduce the description to a set
of three coupled ordinary differential equations (ODE)
in time and two ODE’s in space. The input field
envelope is defined such that it includes both the pump
and probe pulses, and the model calculates the
attenuation/gain of the envelope as the pulses propagate
through the sample volume.

The five differential equations describing this system
are given in equations (11) and (20). These are
repeated below using explicit notation for the
dependencies of the variables:

%plx(z’ 75 u) =TIy [1 - ,0“(2, T;u)]
2y e'(z,7)0k (2,7;u)

" -t @ r)on )

(21a),
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%oz nu)=-r,05(.70)

+ [‘021 - co(u)]azll (Z’T; u) (21b),
+angl (z, 1')[1 -2p,(z,7; u)]

Lo, (z,1u)=~y,04(z,7;u)

~[wy - o)} (z,73u) 210),
—Lef (2,0 1-2p,, (2, 750)]
£&%(z,0)=-32p'(z,7) @14d),
£5'(z0)= 2=p"(D) @21e).

The first three differential equations describe the time
evolution of the density matrix at a particular spatial
location for an atom with a particular velocity
component. The atoms addressed by these equations
will see a Doppler shifted laser frequency, and as such,
the apparent laser frequency o is shown to have a
velocity dependence. The Doppler-shifted frequency is:
o) =w,~k,u (22).
The last two differential equations relate the spatial
gradient of the electric field to the induced polarization.
The induced polarization envelope functions are
directly related to the coherence envelope functions as

follows:
1

m
P(2,7) = Nyor by, [m}

(%),
o Iaf, (z,z';u)e—mdu
N
pl(zr)= Nmr#u(m]
(23b).

+e0 mu?

. J.azll (z,r;u)e " du

-0

Numerical Solution

In order to numerically solve these equations, a
spatial-temporal grid is set up as shown in Figure 4.

The interaction volume starts at z=0, and it is
discretized into I positions with a uniform spacing h,.
At each position z;, the electric field is solved on a
temporal grid that starts at the retarded time 1,=0, ends
at time 7;, and has a uniform spacing h,. At each
position, the atomic response is calculated for velocity
groups u, where k=1,2,...K.

We assume that prior to the interaction region (z<0),
the electric field has not had any resonant interactions
with matter. The electric field envelope is assigned a
particular functional form that depends upon
experimental conditions such as the laser power, the
beam splitter ratio, and the pump-probe pulse delay.
The electric field is then specified on the t-axis as
shown in Figure 4. To indicate that the values of the
electric field envelopes are known at these grid points,
the left side of each grid point is blackened.

We define the electric field to be zero for 1<0 at z=0.
Since information cannot travel faster than the speed of
light, this constraint forces the electric field to be zero
for 1<0 at all z. Therefore, the resonant atoms are at
equilibrium for these conditions, and the density matrix
assumes equilibrium values at grid points along the z-
axis in Figure 4. To indicate that the values of the
density matrix elements, and therefore, the polarization
envelope functions, are known at these grid points, the
right half of each has been blackened.

The density matrix equations (21a-c), form a set of
coupled ODE’s at a position z,. If the values of the
electric field envelope functions are known for all 1; at
z;, and the density matrix elements are known for =0 at
z;, this set of ODE’s takes the form of an initial value
problem (IVP). In other words, the equations can be
directly integrated by marching forward in time from
7=0. This is the case for the t-axis in Figure 4. A
rectangle has been drawn around these grid points to
indicate that the density matrix equations can be solved
for these points when the initial conditions are specified.
The integration is performed using a Bulirsch-Stoer
adaptive step-sizing routine'®. This integrator solves for
P11, Oar", and o, at each time grid point. However,
since it is an adaptively stepping algorithm, it requires
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Figure 4. The spatial-temporal grid on which the pulse
propagation equations are solved. The state shown in
the figure corresponds to initial conditions. A circle
with the right half blackened indicates that the values of
P~ and p' are known at that grid point. A darkened left
half indicates that the values of e® and &' are known.

values of €® and €' between the grid points. When such
an evaluation is necessary, cubic spline interpolation is
used.

To obtain the induced polarization envelope functions
at position z;, the density matrix equations must be
solved for each velocity group, w#,. The results are
averaged at each grid point as specified by the integrals
in equations (23a) and (23b). These integrals have the
form of g(x)exp(-x*)dx, and as such, they are efficiently
computed using Gauss-Hermite integration'®. For a K-
order Gauss-Hermite integration, the values of u, are
chosen so that they correspond to the zeros of the K™-
order Hermitian polynomial x:

2k, T
m

u, = x, ; k=1LK (24).

Using weight functions w,, defined in reference [15],
the integrals are approximated as follows:

2

+o0 _mu
J'O'ZI(Z,,rj;u)e 2T dy
-0 (25)

K
zj]lfzo'zl (25730 )W,
e

After these integrals have been computed for all 7; at z,,
both the electric field and the induced polarization are
known at z,. This state is shown in Figure 5a, where the
grid points along the t-axis are completely filled-in.

T
T,[IE@(D@@CD-"G)
o
0]
0]
o
—o—>2z
Z,
T
T,}_D—(D(D@G)G)---(D
YHEEE I :
Tjn ©Cl O & O O D e O
T ©| O @ O O © o O
Tia © O O O O O e O
© 0O O O O @ so= @
®) 1, 60 —0—0—0—0—0—K—0>2z
Z, z; Z, Z; Zy Z

Figure 5. (a) Euler method is used to compute £® and €'
at z,. (b) The induced polarization envelopes, pR(ZZ,Tj)
and p'(z,,1)), are calculated by integrating the density
matrix equations and statistical averaging the atomic
responses at z.

The propagation of the electric field is determined by
equations (21d-e). These equations are numerically
integrated between z; and z, using the simple Euler
method at each time 1;. These steps are symbolically
shown in Figure 5a. The 2J equations used to compute
the electric field envelope functions are:

k

g*(z,,7;) =-h, [250 p’(zl,tj)] ; j=1.J (26a),
g'(z,,7)) = hz[Zk;u pR(zl,rj)] ; j=1.J (26b).

As a result of these integrations, all of the initial
conditions necessary to integrate the density matrix
equations at position z, are now known. By integrating
equations (21a-c) for each of the K velocity groups, and
statistically averaging the atomic responses at each time
as dictated by equation (25), the induced polarization at
z, is calculated. This step involves the grid points
within the rectangle in Figure 5b.
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At this point, values of the electric field and induced
polarization envelopes are known for all 1; at the first
two positions.  With this information, a simple
predictor-corrector scheme is used to calculate the
electric field envelopes at the next position. For each
time 1, prediction of the electric field envelope
functions are made by taking symmetric Euler steps
from z, to z; using the value of the polarization at the
central grid point. In general, the predictor step is given
below, where the subscript “p” on the electric field
denotes a predicted value.

R R
& (ZH»)’T )—8 (zl l’T )

(27a)
A L o) S T B

1 1
8p(zi+lﬂrj) =& (Z,-_],‘Z'j)

‘ 27b)
+2hz :Toapk(znrj)];j =1.J

The density matrix equations and statistical summations
are computed at position z;,; using the predicted values
of the electric field. This results in predicted values of
the polarization at z;.;. Finally, corrected values for the
electric field at z;,, are computed by taking an Euler
step from z; to z;, using the average of the polarization
at z; and the predicted polarization at z;,;. The corrector
step is given by the following equations:

R R
E(z,,7;)=€"(2,57))

lh < [pl(zi’Tj)+p;1;(zi+1’rj)];j=1..J

z 2¢,

(28a)

£'(z,,7,)=¢€"(z,,7))

i+1?

lhk

z 2¢,

(28b)
[pR(ZnTj) +p§(Zi+l,Tj)];] =

After each corrector step, the integral of the square of
the electric field envelope is computed using Romberg
integration'®. Like the Bulirsch-Stoer algorithm, this is
an extrapolative method that requires function
evaluation between grid points. Once again, cubic
spline interpolation is used for these evaluations. The
limits of integration are set to contain only the probe
pulse so that the result is proportional to the total probe
pulse energy. By normalizing this result to that for
position z;, one obtains the pulse-averaged probe
attenuation at position z;.

Repeating this predictor-corrector scheme, the
electric field and induced polarization is determined at
all grid points.

i0

Density Matrix Model Results

We now present some preliminary results for pulse
propagation in pump/probe experiments with potassium.
We are focusing on potassium because we wish to
validate our model results experimentally, and we are
well-suited to carry out potassium pump/probe
experiments. Potassium has several advantages which
make it ideal for this characterization. First, it has two
strong ground state transitions in the fundamental tuning
range of Ti:Sapphire. Secondly, for these resonances,
potassium is completely described by a three-level
model. Therefore, we can be certain that our model
accurately describes the physical interaction. Although
our current model uses the two-level density matrix
equations, we will implement a three-level model soon.
The following simulations use parameters typical to
proposed experimental conditions.

Experimental Parameters

The proposed experiments will employ the Spectra
Physics regeneratively mode-locked Ti:Sapphire laser
system described earlier. The beam diameter is
approxunately 100 pum at the sample volume. Assuming
a sech’ intensity profile, the electric field magnitude at
the sample is approxunately 1.5x107 V/m for the 2-ps
pulses, and 2.8 x10° V/m for the 60-ps pulses. The
transform-hrmted spectral FWHM of a 2-ps pulse is
Awp=0.99 ps’, whlle that of a 60-ps pulse is
Awgops=3.3x1072 ps™.

The laser will be tuned to the 4°S,,-4°P,, transition
of atomic potassium at 769.9 nm. Both the ground state
and the excited state have a degeneracy of 2, so the
density matrix model does not need to explicitly
account for degeneracy of states. Fiechtner and Linne'
probed the 47S,,-4°P;, transition (766.5 nm) in prior
pump/probe experiments, but to properly model that
transition, the density matrix equations would need to
explicitly account for the different degeneracies of the
two states. For the conditions of their experiments, it
was determined that to avoid saturation the pump and
probe beam powers had to be kept below 4 mW (49 pJ
per pulse) and 5 mW (61 pJ/pulse), respectively's.

The spontaneous emission coefficient for the 4281,2-
4%P,, transition'” is approximately 0.382x10® s™'. This
value corresponds to a dipole moment of 2. 5x10%
C-m. For atmospheric flame conditions, we assume
that the collisional dephasing ratey,; and the de-
excitation rate I';; are both equal to 5x10° s

A Winefordner-style aspirating burner will be used to
seed the potassium into an atmospheric methane/air
flame. We assume an equilibrium temperature of
approximately 2000 K, which corresponds to a FWHM
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of the potassium velocity distribution of 922 m/s. The
corresponding Doppler broadening of the atomic line is
A®poppie=7-5%10" ps’.

For simulations involving 2-ps pulses, the temporal
discretization is typically set to 0.05 ps so that 40 grid
points span one intensity FWHM. All simulations
shown here use 2 mm interaction region, and the spatial
discretization is chosen so that the difference between
the predictor (27) and the corrector step (28) is kept
within a 5% tolerance. When Doppler broadening is
explicitly included in the simulations, 19 velocity
groups are used in the integrations defined by equation
(25).

Initial Conditions

We assume that when unperturbed, all atoms are in
the ground state. Furthermore, the coherences must be

zero when no coherent excitation is present. These
initial conditions are summarized as follows.
Pu(z0u,) =1
R . o e ) = :
02,04, ) =05(2,,0;u,) =0
(28

i=1l.Lk=1.K

We further assume that the mode-locked laser pulses are
described by hyperbolic secant envelope functions. The
envelope function for the pump has a magnitude €,, and
it peaks at 7=1,. The probe envelope has a magnitude
€5, and it peaks att1=1,. The pulses are spatially
separated by Az=c(1,-1;). Each pulse has the same
intensity full width at half-maximum (FWHM) which is
denoted by Atrwum- Using (6), the electric field
envelope is specified at z=0 by the following two
functions.

e"(0,7) =¢, sechl%",'(—‘ﬁ"—”(r -7 )Jcos¢
+&, sec h[ 2’“(‘/_"” (t-7 )]
[cospcos koAz +singsink,Az]

(30a)

£'(0,7) = —¢, sec h[ 2'"(‘/_ D(r-7 )]sm¢

)]

[cos @sink, Az —singcosk, Az]

21n(J‘ 1)(

+ &, sec h[ (30b)
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Figure 6. Example of the electric field envelope for
z=0. The square of the magnitude of the envelope
function is shown in part a). Part b) show the real part
of the complex envelope function, and part ¢) shows the
imaginary part of the envelope function.

Figure 6a depicts the modulus squared for a
pump/probe envelope. In this example, the phase is set
so that the pump envelope is purely real at z=0
(9(0,7)=0 in Equation (3). The probe intensity is 10%
of the pump intensity. The peak of the pump pulse
occurs at T;=5Atrwnm, and the probe pulse peaks at
1,=1;+10ATzwym. For the numerical integration, it is
important to truncate the envelope functions, so that the
laser electric field is always zero for 1<0. A further
restriction is placed on the functions to distinctly
separate the pump and probe pulses. This is
accomplished by setting the electric field for each pulse
to zero for [t-Tpca>4ATrwam.

Figures 6b) and 6¢) show the real and imaginary parts
of the envelope function as determined from (30).
When considered independently, the pump and probe
pulses were taken to be purely real. However, when the
envelope function for both pulses is calculated, the
imaginary part is non-zero due to the phase k,Az
introduced by the pump-probe delay.

An important point to be made here is that very slight
changes in Az, on the order of a fraction of an optical
wavelength, can dramatically change the envelope
function. For example, if Az is set so that the envelope
is purely real, coherences due to the pump pulse are
exactly in phase with the probe pulse. If Az is then
shifted one-half of an optical wavelength, the pump and
probe are exactly out of phase. Shifts of this magnitude
will most definitely occur in an experiment. Therefore,
future improvements to the model will include handling
of these as well as other typical fluctuations.
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Doppler Effects

The model includes Doppler effects by averaging
atomic responses over a Maxwellian distribution.
However, for potassium, under atmospheric flame
conditions, Doppler broadening is negligible with
respect to the spectral bandwidth of a 2-ps pulse. At
2000 K, the Doppler width for potassium is two orders
of magnitude smaller than the laser spectral bandwidth.
Therefore, atomic responses vary little for velocity
groups within the Maxwellian distribution, and the
average atomic response turns out to be the response
that is calculated for stationary atoms. Therefore, the
remaining simulations do not carry out the statistical
average explicitly.

Probe Pulse Propagation - No Pump

The following figure shows the excited state
population that results after a single pulse interaction.
For these simulations, the pulse is propagated through
an interaction length of 2 mm with a total potassium
number density of 10" cm™
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Figure 7. The excited state population of potassium is
plotted as a function of pulse energy. Circles indicate
that the data point is a simulation result. The connecting
lines are not actual simulation data, but only included to
aid in visualization.

Initially, the excited state population scales linearly with
pulse energy. This is the result predicted by the rate
equations. However, as the energy increases, the excited
state population does not saturate at a value of 0.5 as
predicted by the rate equations. Instead, at 0.34 nJ
(indicated by point (a) in the figure), almost all of the
population is in the excited state. If the pulse energy is
increased still further, the population is stimulated back
towards the ground state. At point (b), almost all of the
population is back in the ground state. The excited state
population and the laser attenuation for a pulse with
energy (b) are both plotted as a function of time in
Figure 8. Since little collisional relaxation occurs on
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Figure 8. The time history of the excited state

population and the pulse gain are shown for a 1.3 nJ

pulse aﬁer propagating through 2 mm of potassium at
10" em™. This corresponds to point (b) in Figure 7.

these short time scales, conservation of energy dictates
that that this pulse sees very little integrated attenuation.
This is shown in the figure, where the first haif of the
pulse is attenuated, and the second half experiences
gain. The time-integrated gain is approximately zero.
This behavior has been extensively studied, and is
termed “self-induced transparency.” McCall and

Hahn'® wrote the definitive paper on this subject in
1969.

An interesting phenomena occurs as the pulse energy
is increased beyond point (a) in Figure 7. The
population then flops back and forth during the pulse.
If the electric field of the pulse is constant, these
oscillations occur at a fixed frequency, the Rabi
frequency (Qgai). In general, the Rabi frequency is
time-dependent and is related to the electric field
envelope by

et
QM=%f) 31)

Figure 9 shows the Rabi oscillation corresponding to the
maximum pulse we can produce with our unamplified
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Figure 9. The time history of the excited state
population and the pulse gain are shown for a 22.6 nJ
pulse after propagating through 2 mm of potassium at
10" cm®. This corresponds to the maximum pulse
energy for our unamplified Ti:sapphire laser.
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Ti:sapphire laser. The pulse energy is 22.6 'nJ.
Although this phenomena is interesting, for our
purposes, it is undesirable to operate in this regime.
The state of the atomic population following a pulse that
induces Rabi oscillations is highly sensitive to pulse
shape, height, and duration. Slight laser fluctuations
result in very unpredictable behavior, and this makes
correct characterization of the pump/probe experiment
not possible. '

Pump/Probe Propagation

The previous results, shown in Figure 7, suggest that
potassium pump/probe will most likely be linear when
pulse energies are less than 0.1 nJ. For preliminary
investigation, we decided to consider a probe energy of
1.2 pJ (100 pW average power). We varied the pump
energies from 1.2 pJ to 122 pJ. We have simulation
results for these pump and pulse energies with the
product of the total number density and the interaction
length, NrorL, varying from 2x10° to 2x10"2 mm cm?.
Currently, numerical errors prevent us from obtaining
results with NrorL < 2x10° mm cm™. This issue will be
addressed in a future version of the code.

We are looking for a linear relationship between
modulation depth and the NyorL product, such as:

Cop = C Nyor L 32).

To determine if such a relationship exists, we solved
equation (32) for C, and plotted that result in Figure 10.
As an example, when the pump pulse energy is 24 pJ,
the constant in equation (32) is approximately
-0.5x10™", where Nyor is given in cm®, and L is given
inmm. This relationship holds provided that the NyorL
product does not exceed 3x10" mm cm™. Similar limits
can be defined for other pump energies.
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Figure 10. Linearity of pump/probe modulation depth
with NrorL for several values of pump pulse energy.
The probe pulse energy is 1.2 pJ.
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Figure 11. Linearity of pump/probe modulation depth
with pulse energy for several values of NrorL. The
probe pulse energy is 1.2 pJ. Circles indicate the data
point is a simulation result. The connecting lines are not
actual simulation data, but only included to aid in
visualization of departure from linearity.

A similar presentation of the data can be made to check
for linearity of the pump/probe signal with pump pulse
energy. In this case we assume the following
relationship.

Cuop = K Epppp (33)

Figure 11 plots X as a function of the pulse energies
shown in Figure 10. Clearly, for pump energies less
than 25 pJ, this relationship applies fairly well.
However, it does not hold between 25 pJ and 122 pJ.

We conclude, therefore, that is will be possible to
perform picosecond pump/probe experiments within
well-defined rate equation limits, which are in
agreement with the limits originally set by Fiecthner er
al®. Whether the density matrix formalism predicts the
same modulation depth as the rate equations is another
question.

Comparison Between the Rate Equation and
Density Matrix Formalisms

We find that, when realistic numbers are used in both
the rate equation and the density matrix formalisms, the
two approaches always agree to within an order of
magnitude - when we remain within the rate equation
limit. Indeed, it is possible to force complete agreement
by adjusting the phase shift between the pump and
probe pulses in the density matrix model. This is a
reflection of a point we have already made - very slight
changes in Az, on the order of a fraction of an optical
wavelength, can dramatically change the pulse envelope
function. For example, if Az is set so that the envelope is
purely real, coherences due to the pump pulse are
exactly in phase with the probe pulse. If Az is then
shifted one-half of an optical wavelength, the pump and
probe are exactly out of phase. These seemingly minor
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phase shifts can significantly change the modulation
depth predicted by the model. Shifts of this magnitude
will most definitely occur in an experiment. At this
point in time, encouraging rough agreement has been
found. In order to explore this question accurately,
however, it will be necessary to average the modulation
depth predicted by the density matrix model over the
phase shifts one should encounter in a real experiment.
That work is ongoing. '

Conclusions

This paper presents a basic discussion of both rate
equation and a density matrix models that we are
currently developing to study pulse propagation in
pump/probe experiments. The non-perturbative density
matrix model does not use any simplifying assumptions
with regards to pulse intensities, and treats the atomic
response with a  quantum-mechanically-correct
formalism. This model is being developed in an attempt
to either validate the rate equation-based model or to
identify a similar kind of relationship. Furthermore, the
model can be used to maximize signal while staying
within the experimental limits of applicability of this
relationship.

Preliminary simulation results were presented to
demonstrate qualitative behavior as a function of both
pump pulse energy and total number density.
Experimental parameters for a potassium pump/probe
experiment were used, and the simulations
demonstrated linear behavior in the weak interaction
limit. However, a departure from this linearity was
observed as the interaction strength was increased.
When the laser pulses are sufficiently strong to cause
Rabi oscillations in the atomic populations, it is no
longer possible to characterize the experiment with
simple expressions. In this regime, subtle changes in
pulse amplitude and shape can result in dramatically
different modulation depths.

In order to accurately compare the rate equation and
density matrix formalisms, it will be necessary to
average the modulation depth predicted by the density
matrix model over the phase shifts one should encounter
in a real experiment. Future work will also include the
implementation of multi-level models for the atomic
resonance. A fully accurate potassium model requires
that the three-level density matrix equations are used,
although the Potassium D lines are sufficiently
separated that the two-level model contains most of the
important physics. Following some basic improvements
to the numerical code, we will simulate potassium
pump/probe propagation, and thoroughly characterize
the parameter space. This will involve careful
experimentation, including real-time pump/probe and
line-of-sight absorption measurements over the range of
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concentrations and laser intensities of interest.
Measurements will then be compared to the predictions
of the density matrix and rate equation formalisms.
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